
Chapter 5
Risk-Seeking Agent

In previous section we represented agent’s perceived risk by a measure that reflects
the dispersion of his revenue stream. Although the dispersion of possible outcomes
has been widely used as the measure of risk (Pratt 1964; Rothschild and Stiglitz
1970; Stiglitz 1974; Levy 1992; Fukunaga and Huffman 2009; Lewis and Bajari
2014) it fails to capture observable behavior in risky settings. In this section we
extend our principal-agent analysis to risk-seeking agent. We note that there is
an ongoing evaluation of risk attitudes in an attempt to explain peoples’ behavior
when faced with risky choices. For instance Prospect Theory claims to offer a
better model that covers discrepancies observed elsewhere (Kahneman and Tversky
1979; Tversky and Kahneman 1992). Prospect Theory claims that people are less
sensitive to the variation of the probability of outcomes compared to the expectation,
and losses loom larger than gains. Furthermore, empirical evidences indicates that
decision makers prefer expressions of risk in terms of the expected value at stake,
and they appear to be risk-averse when dealing with a risky alternative whose
possible outcomes are generally good and tend to be risk-seeking when dealing with
a risky alternative whose possible outcomes are generally poor (March and Shapira
1987; Filiz-Ozbay et al. 2013).

In our principal-agent setting with a risk-seeking agent we propose that an agent
perceives a greater loss when he is charged a larger penalty rate for each unit of
downtime and also when the probability of being in the failed state goes up. The
agent’s penalty rate at any point of time can be modeled as pB where B is a Bernoulli
random variable that takes value 0 with probability P.0/ D �=.� C �/ and value 1
with probability P.1/ D �=.� C �/. For simplicity denote momentarily a � P.1/.
In this section we adopt the following risk measure:

r.a/ � p

�
a � 1

2

�
C

for a 2 Œ0; 1�
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Fig. 5.1 �.�; w; p/ as a function of P.1/ when � D �1

We note that R.pB/ � r.a/ satisfies the properties of monotonicity, sub-additivity
and positive homogeneity of a coherent risk measure but fails to satisfy the property
of translation invariance, since R.pB/ is independent of the expectation of pB
(Artzner et al. 1999).

Risk premium of a risk-seeking agent is the $ value considered by the agent as
extra gains to his revenue stream. As a consequence, just for the risk-seeking agent
we modify the risk premium defined earlier in (4.1), in a manner that reflects the
expected amount at stake instead of the dispersion of the revenue stream:

�.�; w; p/ � ��p

�
P.1/ � 1

2

�
C

D ��p

�
�

� C �
� 1

2

�
C

(5.1)

Note that for risk-seeking agent � < 0 ) �.�; w; p/ � 0, and adding such a
risk premium to a risk-neutral agent’s expected utility rate (as in (5.2)) implies risk-
seeking. Figure 5.1 depicts �.�; w; p/ as a function of P.1/ for � D �1.

The representation of the risk premium in (5.1) is consistent with the properties of
risk in the Prospect Theory (Kahneman and Tversky 1979; Tversky and Kahneman
1992) and the empirical findings in (March and Shapira 1987): The risk premium
is zero when P.1/ is lower than 1=2. The risk premium increases with P.1/ linearly
when P.1/ exceeds one half, and reaches its peak when P.1/ D 1.

Denote � � �� > 0. Modifying (3.2), the risk-seeking agent’s expected utility
rate is:

uA.�I w; p/D
�

w � p�

� C �
� � C �p

�
�

� C �
� 1

2

�
C

�
C

for w > 0; p > 0; � � 0

(5.2)

Since the analysis is different for � 2 .0; 8=9/, � 2 Œ8=9; 2/ and � � 2, therefore,
when � 2 .0; 8=9/ we consider the agent as weakly risk-seeking, when � 2 Œ8=9; 2/

we consider the agent as moderately risk-seeking, and when � � 2 we consider the
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agent as strongly risk-seeking. We assume, say for historic reasons, that both the
agent and the principal know not only the agent’s type as risk-seeking but also the
value of �.

The expression for the principal’s expected revenue rate …P.w; pI �/ remains the
same as (3.3).

Before examining the details of the optimal contracts we discuss a potential
case of the agent compensating the principal at times during the contract. Such
occurrence of utility transfer from an risk-seeking agent to the principal can have
one of two forms: either the compensation rate is non-positive (w � 0), or the
principal is guaranteed a positive expected revenue rate even with her unit in the
failed state forever (�w C p > 0 if � D 0). Under our setting of undetermined
contract horizon it is unrealistic to accept that the agent might compensate the
principal when the unit is forever in the failed state. Therefore the occurrence of
a non-positive compensation rate (w � 0) has be ruled out in the definition of the
Strategy Set (Definition 2.1). Nevertheless, the possibility of the principal receiving
a positive expected revenue rate with a failed unit has to be considered. Therefore we
extend the definition of the Set of Admissible Solutions (Definition 2.3) as follows.

Definition 5.1 (Set of Admissible Solutions). The set of admissible solutions for
the principal-agent problem P is the set s.P/ of all strategies ..w; p/; �/ 2 S.P/

for which:

(a) À ..w0; p0/; �0/ 2 S.P/ such that ..w0; p0/; �0/ � ..w; p/; �/ – there is no other
strategy that weakly dominates ..w; p/; �/.

(b) …P.w; pI �/ > …P and uA.�I w; p/ � uA.
(c) If � D 0, then w � p.

We denote the part inside the brackets in Eq. (5.2) as

u.�/ �

8̂̂
<
ˆ̂:

w � �p

2
� .1 � �/p�

� C �
� �, � 2 Œ0; ��

w � p�

� C �
� �, � > �

(5.3)

Note that u.�/ is differentiable everywhere for � � 0 except at � D �. When
� 2 Œ0; �/:

du.�/

d�
D .1 � �/p�

.� C �/2
� 1, lim

�!0C

du.�/

d�
D 1 � �

�

�
p � �

1 � �

�

lim
�!��

du.�/

d�
D 1 � �

4�

�
p � 4�

1 � �

�
,

d2u.�/

d�2
D �2.1 � �/p�

.� C �/3
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and when � > �:

du.�/

d�
D p�

.� C �/2
� 1, lim

�!�C

du.�/

d�
D p � 4�

4�

lim
�!C1

du.�/

d�
D �1 < 0 and

d2u.�/

d�2
D � 2p�

.� C �/3
< 0

The positivity or negativity of the above derivatives indicate the direction of
monotonicity and the concavity/convexity of the function u.�/ over Œ0; �/ and
.�; C1/. Table 5.1 summarizes these indicators for various regions of the space
R

2C for pairs of .�; p/. In the table u�.�/ D lim�!� du=d�, and u�.�C/ represents
the limit of u�.�/ as � approaches .�/ from above, and similarly u�.��/ represents
the limit of u�.�/ as � approaches .�/ from below.

5.1 Optimal Strategies for the Weakly Risk-Seeking Agent

Note that agent’s expected utility rate (see (5.2)) increases and principal’s expected
profit rate (see (3.3)) decreases in w, therefore for any value of p the principal
can maximize her expected profit rate by lowering w yet safeguarding agent’s
participation by setting the agent’s expected utility rate equal to his reservation
utility rate. Although the principal cannot contract directly on the agent’s service
capacity, she anticipates the agent optimizing his expected utility rate when offered
a contract. That is, for any w and p values proposed by the principal, the agent
computes the � that maximizes his expected utility rate and subsequently decides
whether to accept the contract or not, by solving the following optimization
problem:

max
��0

u.�/ D max
��0

�
w � p�

� C �
� � C �p

�
�

� C �
� 1

2

�
C

�
(5.4)

The agent’s optimal service capacity is denoted by ��.w; p/ D argmax��0 u.�/.
Before proceeding to derive the agent’s optimal strategy we introduce some

notation:

p1 � �

1 � �
, p2 �

16
�
2 � � � 2

p
1 � �

�
�

�2
(5.5)

and the following identity is verified using the definition of p2:

w2 � �p2

2
C 2

p
.1 � �/p2� � � D 2

p
p2� � � (5.6)

Note that p1, p2 and w2 are functions of � and �. However we suppress .�; �/.
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Next we introduce a number of technical lemmas (see proofs in the Appendix).

Lemma 5.2. Let 1 > � > 0 and � > 0.

(a) If
4
�p

1 � �=2 �p
1 � �

�2

�

�2
> p > 0, then 0 >

�p

2
C 2

p
.1 � �/p� � �.

(b) If p >
4
�p

1 � �=2 �p
1 � �

�2

�

�2
, then

�p

2
C 2

p
.1 � �/p� � � > 0.

(c) If p D
4
�p

1 � �=2 �p
1 � �

�2

�

�2
, then

�p

2
C 2

p
.1 � �/p� � � D 0.

Lemma 5.3. Let 1 > � > 0 and � > 0, then �=.1��/ > 4
�p

1 � �=2 �p
1 � �

�2

�=�2.

Lemma 5.4. Let 2 > � > 0 and � > 0.

(a) If
2�

2 C � � 2
p

2�
> p >

2�

2 C � C 2
p

2�
, then 0 >

�
1 � �

2

�
p � 2

p
p� C �.

(b) If
2�

2 C � C 2
p

2�
> p > 0 or p >

2�

2 C � � 2
p

2�
, then

�
1 � �

2

�
p � 2

p
p� C

� > 0.

(c) If p D 2�

2 C � C 2
p

2�
or p D 2�

2 C � � 2
p

2�
, then

�
1 � �

2

�
p�2

p
p�C�D0.

Lemma 5.5. Let � > 0 and � > 0, then 4� > 2�=
�
2 C � C 2

p
2�
�

.

Lemma 5.6. Let � > 0.

(a) If
8

9
> � > 0, then

2�

2 C � � 2
p

2�
>

�

1 � �
.

(b) If 1 > � >
8

9
, then

�

1 � �
>

2�

2 C � � 2
p

2�
.

(c) If � D 8

9
, then

2�

2 C � � 2
p

2�
D �

1 � �
.

Lemma 5.7. Let 1 > � > 0 and � > 0.

(a) If
16
�
2 � � � 2

p
1 � �

�
�

�2
> p > 0, then 0 >

�p

2
� 2

�
1 �p

1 � �
�p

p�.

(b) If p >
16
�
2 � � � 2

p
1 � �

�
�

�2
, then

�p

2
� 2

�
1 �p

1 � �
�p

p� > 0.

(c) If p D 0 or p D
16
�
2 � � � 2

p
1 � �

�
�

�2
, then

�p

2
� 2

�
1 �p

1 � �
�p

p�D0.

Lemma 5.8. Let � > 0.
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(a) If
8

9
> � > 0, then

16
�
2 � � � 2

p
1 � �

�
�

�2
>

�

1 � �
.

(b) If 1 > � >
8

9
, then

�

1 � �
>

16
�
2 � � � 2

p
1 � �

�
�

�2
.

(c) If � D 8

9
, then

16
�
2 � � � 2

p
1 � �

�
�

�2
D �

1 � �
.

Lemma 5.9. Let 1 > � > 0 and � > 0, then 4�=.1 � �/ > 16
�
2 � � � 2

p
1 � �

�
�=�2 > 4�.

Lemmas 5.8 and 5.9 imply � 2 .0; 3=4/ ) 4p1 > p2 > 4� � p1 > 0 and
� 2 .3=4; 8=9/ ) 4p1 > p2 > p1 > 4� > 0.

We present weakly risk-seeking agent’s optimal response to any contract offers
.w; p/ 2 R

2C in Proposition 5.10.

Proposition 5.10. Consider a weakly risk-seeking agent .� 2 .0; 8=9//.

(a) Given

p 2 .0; p1� and w �
�

1 � �

2

�
p (5.7)

then the agent accepts the contract and installs ��.w; p/ D 0 with resulting
expected utility rate uA.��.w; p/I w; p/ D w � .1 � �=2/p � 0. The agent
rejects the contract if both p 2 .0; p1� and w 2 .0; .1 � �=2/p/.

(b) Given

p 2 .p1; p2/ and w � �p

2
C 2

p
.1 � �/p� � � (5.8)

then the agent accepts the contract and installs ��.w; p/ D p
.1 � �/p� � �

with resulting expected utility rate uA.��.w; p/I w; p/ D w � �p=2 � 2p
.1 � �/p� C � � 0. The agent rejects the contract if both p 2 .p1; p2/

and w 2
�
0; �p=2 C 2

p
.1 � �/p� � �

�
.

(c) Given

p D p2 and w � w2 (5.9)

then the agent accepts the contract and is indifferent about installing either
��.w; p/ D p

.1 � �/p2� � � or ��.w; p/ D p
p2� � �. In both cases

the agent receives uA.��.w; p/I w; p/ D w � w2 � 0. If r 2 .0; p2/, then

there exists w� such that
�
.w�; p2/; �� D p

.1 � �/p2� � �
�

is the unique

admissible solution (see Definition 5.1). If r D p2, there exists w� such
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that
�
.w�; p2/; �� D p

p2� � �
�

and
�
.w�; p2/; �� D p

.1 � �/p2� � �
�

are both admissible solutions. If r > p2, then there exists w� such that�
.w�; p2/; �� D p

p2� � �
�

is the unique admissible solution (for proof see

Proposition 5.13). The agent rejects the contract if both p D p2 and w 2 .0; w2/.
(d) Given

p > p2 and w � 2
p

p� � � (5.10)

then the agent accepts the contract and installs ��.w; p/ D p
p� � � with

resulting expected utility rate uA.��.w; p/I w; p/ D w � 2
p

p� C � � 0. The

agent rejects the contract if both p > p2 and w 2
�
0; 2

p
p� � �

�
.

Proof. According to Table 5.1, the behavior of u.�/ when � 2 .0; 3=4� versus
� 2 .3=4; 8=9/ is different. Therefore we prove the proposition separately for
� 2 .0; 3=4� and � 2 .3=4; 8=9/.

Case � 2 .0; 3=4�: According to Lemmas 5.8 part (a) and 5.9, 4p1 > p2 > 4� �
p1 > 0. Figure 5.2 depicts the shape of u.�/ when � 2 .0; 3=4� and the value of p
falls in different ranges. The structure of the proof when � 2 .0; 3=4� is depicted
in Fig. 5.3.

Case p 2 �
0; p1

�
: According to Table 5.1, u.�/ is decreasing with respect to

��0. Thus the agent’s optimal service capacity is ��.w; p/ D 0 and from (5.3)
u.��.w; p// D w � .1 � �=2/p. Note that 1 � �=2 > 0.

Subcase w 2 �
0; .1 � �=2/p

�
: u.��.w; p// < 0, therefore the agent rejects

the contract.
Subcase w � .1 � �=2/p: u.��.w; p// � 0, thus the agent would accept the

contract if offered.

Case p 2 �
p1; 4�

�
: According to Table 5.1, the service capacity that max-

imizes u.�/ lies in .0; �/. �� is computed from first order condition
du.�/=d�j�D��.w;p/ D 0 ) ��.w; p/ D p

.1 � �/p� � � > 0 and from
(5.3) u.��.w; p// D w � �p=2 � 2

p
.1 � �/p� C �. According to Lemmas 5.2

part (b) and 5.3, �p=2 C 2
p

.1 � �/p� � � > 0, therefore we examine the
following subcases.

Subcase w 2
�

0; �p=2 C 2
p

.1 � �/p� � �
�

: u.��.w; p// < 0, therefore the

agent rejects the contract.
Subcase w � �p=2 C 2

p
.1 � �/p� � �: u.��.w; p// � 0, thus the agent

would accept the contract if offered.

Case p 2 �
4�; 4p1

�
: According to Table 5.1, there is a service capacity that

maximizes u.�/ for � 2 .0; �� and a service capacity that maximizes u.�/ for
� > �. Denote the optimal service capacity in .0; �� by ��

.0;��.w; p/. From the

first order condition the optimal service capacity is ��
.0;��.w; p/Dp.1��/p���
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Fig. 5.2 Illustration of the forms of u.�/ when � 2 .0; 3=4�
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η ∈
(

0,
3

4

]

p > 4p1

w ≥ 2
√

pλ − λ μ∗ =
√

pλ − λ

w ∈ 0, 2
√

pλ − λ
)

Reject.

p ∈ (4λ, 4p1]

p ∈ (p2, 4p1]

w ≥ 2
√

pλ − λ μ∗ =
√

pλ − λ

w ∈ 0, 2
√

pλ − λ
)

Reject.

p = p2

w ≥ w2
μ∗ =

√
(1 − η)p2λ − λ

or μ∗ =
√

p2λ − λ

w ∈ (0, w2) Reject.

p ∈ (4λ, p2)

w ≥ ηp

2
+ 2

√
(1 − η)pλ − λ μ∗ =

√
(1 − η)pλ − λ

w ∈
(

0,
ηp

2
+ 2

√
(1 − η)pλ − λ

)
Reject.

p ∈ (p1, 4λ]

w ≥ ηp

2
+ 2

√
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Fig. 5.3 Structure of the proof for Proposition 5.10 when � 2 .0; 3=4�

and from Eq. (5.3) u
�
��

.0;��.w; p/
�

D w � �p=2 � 2
p

.1 � �/p� C �. Denote

the optimal service capacity for � > � by ��
�.w; p/, which is obtained from first

order condition du.�/=d�j�D��

� .w;p/ D 0 ) ��
�.w; p/ D p

p� � � and from

Eq. (5.3) u
�
��

�.w; p/
	 D w � 2

p
p� C �. The agent has a choice of two service

capacities and he installs the one that generates a higher expected utility rate.

Note that u
�
��

�.w; p/
	 � u

�
��

.0;��.w; p/
�

D �p=2 � 2
�
1 �p

1 � �
�p

p�.

According to Lemma 5.9, 4p1 > p2 > 4�, therefore we examine the following
subcases.

Subcase p 2 �
4�; p2

�
: By Lemma 5.7 part (a), u

�
��

.0;��.w; p/
�

>

u
�
��

�.w; p/
	
, therefore the agent’s optimal service capacity is ��.w; p/ Dp

.1 � �/p��� and u.��.w; p// D w��p=2�2
p

.1 � �/p�C�. According
to Lemmas 5.2 part (a) and 5.3, �p=2 C 2

p
.1 � �/p� � � > 0, therefore we

examine the following subcases.
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Subsubcase w 2
�

0; �p=2 C 2
p

.1 � �/p� � �
�

: u.��.w; p// < 0, thus

the agent rejects the contract.
Subsubcase w � �p=2 C 2

p
.1 � �/p� � �: u.��.w; p// � 0, therefore

the agent would accept the contract if offered.

Subcase p D p2: According to Lemma 5.7 part (c), u
�
��

.0;��.w; p/
�

D u
�
��

�

.w; p/
	
, indicating that installing either ��

.0;��.w; p2/ or ��
�.w; p2/ leads to the

same agent’s expected utility rate. Therefore the agent is indifferent about
installing ��.w; p/ D p

.1 � �/p� � � or ��.w; p/ D p
p� � �. Still, the

capacity value leads to admissible solutions (see Proposition 5.13). Recall
the definition of w2 from (5.6). By Lemma 5.2, p2 > 4� > p1 ) w2 D
�p2=2C2

p
.1 � �/p2��� > 0, therefore we examine the following subcases.

Subsubcase w 2 �
0; w2

�
: u.��.w; p// < 0, therefore the agent rejects the

contract.
Subsubcase w � w2: u.��.w; p// � 0, therefore the agent would accept

the contract if offered.
Subcase p 2 �

p2; 4p1

�
: From Lemma 5.7 part (b), u

�
��

�.w; p/
	

> u
�
��

.0;��

.w; p/
	
, therefore the agent’s optimal service capacity is ��.w; p/ D p

p� � �

and u.��.w; p// D w�2
p

p�C�. Since p > p2 > 4� ) 2
p

p��� > 3� >

0, therefore we examine the following subcases.

Subsubcase w 2
�

0; 2
p

p� � �
�

: u.��.w; p// < 0, thus the agent rejects

the contract.
Subsubcase w � 2

p
p� � �: u.��.w; p// � 0, therefore the agent would

accept the contract if offered.

Case p > 4p1: According to Table 5.1, the service capacity that maximizes u.�/

satisfies � > �. From the first order condition the agent’s optimal service
capacity is ��.w; p/Dpp��� and from Eq. (5.3) u.��.w; p// D w�2

p
p�C�.

Since p > 4p1 > 4�, therefore 2
p

p� � � > 3� > 0 and we examine the
following subcases.

Subcase w 2
�

0; 2
p

p� � �
�

: u.��.w; p// < 0, thus the agent rejects the
contract.

Subcase w � 2
p

p� � �: u.��.w; p// � 0, therefore the agent would accept
the contract if offered.

This completes the proof for Proposition 5.10 when � 2 .0; 3=4�.

Case � 2 .3=4; 8=9/: According to Lemmas 5.8 and 5.9, 4p1 > p2>p1>4�>0.
Figure 5.4 depicts the shape of u.�/ when � 2 .3=4; 8=9/ and the value of p falls
in different ranges. The structure of the proof when � 2 .3=4; 8=9/ is depicted in
Fig. 5.5.

Case p 2 .0; 4��: According to Table 5.1, u.�/ is decreasing with respect to
� � 0. Therefore the agent’s optimal service capacity is ��.w; p/ D 0 and
from Eq. (5.3) u.��.w; p// D w � .1 � �=2/p. Note that 1 � �=2 > 0.
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Fig. 5.4 Illustration of the forms of u.�/ when � 2 .3=4; 8=9/
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η ∈
( 3

4
,
8

9

)

p > 4p1

w ≥ 2
√

pλ − λ μ∗ =
√

pλ − λ

w ∈ 0, 2
√

pλ − λ
)

Reject.

p ∈ (p1, 4p1]

p ∈ (p2, 4p1]

w ≥ 2
√

pλ − λ μ∗ =
√

pλ − λ

w ∈ 0, 2
√

pλ − λ
)

Reject.

p = p2

w ≥ w2
μ∗ =

√
(1 − η)p2λ − λ

or μ∗ =
√

p2λ − λ

w ∈ (0, w2) Reject.

p ∈ (p1, p2)

w ≥ ηp

2
+ 2

√
(1 − η)pλ − λ μ∗ =

√
(1 − η)pλ − λ

w ∈
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0,
ηp

2
+ 2

√
(1 − η)pλ − λ

)
Reject.
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w ≥
(
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2
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(
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Fig. 5.5 Structure of the proof for Proposition 5.10 when � 2 .3=4; 8=9/

Subcase w 2 �
0; .1 � �=2/p

�
: u.��.w; p// < 0, therefore the agent rejects

the contract.
Subcase w � .1 � �=2/p: u.��.w; p// � 0, thus the agent would accept the

contract if offered.

Case p 2 �
4�; p1

�
: According to Table 5.1, there is a service capacity that

maximizes u.�/ for � 2 Œ0; �/ and a service capacity that maximizes u.�/

for � > �. Denote the optimal service capacity in Œ0; �/ by ��
Œ0;�/.w; p/. Since

u.�/ is decreasing with respect to � over Œ0; �/, therefore ��
Œ0;�/.w; p/ D 0

and from (5.3) u
�
��

Œ0;�/.w; p/
�

D w � .1 � �=2/p. Denote the optimal service

capacity for � > � by ��
�.w; p/. From first order condition ��

�.w; p/ D p
p� � �

and from (5.3) u
�
��

�.w; p/
	 D w � 2

p
p� C �. The agent has to choose

one of the two service capacities and he installs the one with higher expected

utility rate. Note that u
�
��

�.w; p/
	 � u

�
��

Œ0;�/.w; p/
�

D .1 � �=2/p � 2
p

p� C
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�. According to Lemma 5.5, 4� > 2�=
�
2 C � C 2

p
2�
�

and according to

Lemma 5.6, 2�=
�
2 C � � 2

p
2�
�

> p1. Therefore according to Lemma 5.4

part (a), u
�
��

Œ0;�/.w; p/
�

> u
�
��

�.w; p/
	
, the agent’s optimal service capacity is

��.w; p/ D 0 and u.��.w; p// D w�.1��=2/p. Note that 1��=2 > 0, therefore
we examine the following subcases.

Subcase w 2 �
0; .1 � �=2/p

�
: u.��.w; p// < 0, therefore the agent rejects

the contract.
Subcase w � .1 � �=2/p: u.��.w; p// � 0, thus the agent would accept the

contract if offered.

Case p 2 �
p1; 4p1

�
: According to Table 5.1, there is a service capacity that

maximizes u.�/ for � 2 .0; �� and a service capacity that maximizes u.�/ for
� > �. Denote the optimal service capacity in .0; �� by ��

.0;��.w; p/. From first

order condition the optimal service capacity is ��
.0;��.w; p/ D p

.1 � �/p� � �

and from (5.3) u
�
��

.0;��.w; p/
�

D w � �p=2 � 2
p

.1 � �/p� C �. Denote the

optimal service capacity for � > � by ��
�.w; p/. From first order condition

��
�.w; p/ D p

p� � � and from (5.3) u
�
��

�.w; p/
	 D w � 2

p
p� C �. The

agent has a choice of two service capacities and he installs the one that generates

a higher expected utility rate. Note that u
�
��

�.w; p/
	 � u

�
��

.0;��.w; p/
�

D
�p=2�2

�
1 �p

1 � �
�p

p�. According to Lemmas 5.8 and 5.9, 4p1 > p2 > p1,

therefore we examine the following subcases.

Subcase p 2 �
p1; p2

�
: By Lemma 5.7 part (a), u

�
��

.0;��.w; p/
�

> u
�
��

�.w; p/
	
,

therefore the agent’s optimal service capacity is ��.w; p/ D p
.1 � �/p� � �

and u.��.w; p// D w � �p=2 � 2
p

.1 � �/p� C �. According to Lemmas 5.2
and 5.3, p > p1 ) �p=2 C 2

p
.1 � �/p� � � > 0, therefore we examine the

following subcases.

Subsubcase w 2
�

0; �p=2 C 2
p

.1 � �/p� � �
�

: u.��.w; p// < 0, thus

the agent rejects the contract.
Subsubcase w � �p=2 C 2

p
.1 � �/p� � �: u.��.w; p// � 0, therefore

the agent would accept the contract if offered.

Subcase p D p2: According to Lemma 5.7 part (c), u
�
��

.0;��.w; p/
�

D
u
�
��

�.w; p/
	
, indicating that installing ��

.0;��.w; p2/ or ��
�.w; p2/ leads to

the same agent’s expected utility rate. Therefore the agent is indifferent about
installing ��.w; p/ D p

.1 � �/p� � � or ��.w; p/ D p
p� � �. Still, the

capacity value has to lead to admissible solutions (see Proposition 5.13).
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Recall the definition of w2 in (5.6). According to Lemma 5.2, p2 > p1 )
w2 D �p2=2 C 2

p
.1 � �/p2� � � > 0, therefore we examine the following

subcases.
Subsubcase w 2 �

0; w2

�
: u.��.w; p// < 0, therefore the agent rejects the

contract.
Subsubcase w � w2: u.��.w; p// � 0, so the agent would accept the

contract if offered.
Subcase p 2 �

p2; 4p1

�
: By Lemma 5.7 part (b), u

�
��

�.w; p/
	

>u
�
��

.0;��.w; p/
�

,

therefore the agent’s optimal service capacity is ��.w; p/ D p
p� � � and

u.��.w; p// D w � 2
p

p� C �. Since p > p2 > 4� ) 2
p

p� � � > 3� > 0,
therefore we examine the following subcases.

Subsubcase w 2
�

0; 2
p

p� � �
�

: u.��.w; p// < 0, thus the agent rejects

the contract.
Subsubcase w � 2

p
p� � �: u.��.w; p// � 0, therefore the agent would

accept the contract if offered.

Case p > 4p1: According to Table 5.1, the service capacity that maximizes u.�/

satisfies � > �. From the first order condition the agent’s optimal service
capacity is ��.w; p/ D p

p� � � and from (5.3) u.��.w; p// D w � 2
p

p� C �.
Since p > 4p1 > 4�, therefore 2

p
p� � � > 3� > 0 and we examine the

following subcases.

Subcase w 2
�

0; 2
p

p� � �
�

: u.��.w; p// < 0, thus the agent rejects the
contract.

Subcase w � 2
p

p� � �: u.��.w; p// � 0, therefore the agent would accept
the contract if offered.

This complete the proof for Proposition 5.10 when � 2 .3=4; 8=9/. ut
To summarize: Given exogenous market conditions that enable a mutually bene-

ficial contract between a principal and weakly risk-seeking agent (see Theorem 5.17
later), the agent determines his service capacity by using one of only two formulas:

�� D
p

.1 � �/p� � � > 0 or ��.w; p/ D
p

p� � � > 0

The conditions when a weakly risk-seeking agent accepts the contract can be
depicted by the shaded areas in Fig. 5.6, where � D 0:5. The three shaded areas
with different grey scales represent conditions (5.7), (5.8) and (5.10) under which
the agent accepts the contract but responds differently. The lower bound function
of the shaded area (denoted by w0.p/) represents the set of offers of zero expected
utility rate for the agent. The w0.p/ line is defined as follows:
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w
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0

(1
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η
/2

)p
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Fig. 5.6 Conditions when a weakly risk-seeking agent accepts the contract with � D 0:5

w0.p/ D

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

�
1 � �

2

�
p when p 2 .0; p1�

�p

2
C 2

p
.1 � �/p� � � when p 2 .p1; p2�

2
p

p� � � when p > p2

Since limp!p�

1
w0.p/ D limp!pC

1
w0.p/ D .1 � �=2/p1 and limp!p�

2
w0.p/ D

limp!pC

2
w0.p/ D �p2=2 C 2

p
.1 � �/p2� � �, therefore w0.p/ is con-

tinuous everywhere over interval p 2 RC. Since limp!p�

1
dw0.p/=dp D

limp!pC

1
dw0.p/=dp D 1 � �=2, therefore w0.p/ is differentiable at p D p1.

However since limp!p�

2
dw0.p/=dp D �

�
2 �p

1 � �
�

=4
�
1 �p

1 � �
�

¤
�=4

�
1 �p

1 � �
�

D limp!pC

2
dw0.p/=dp, therefore w0.p/ is not differentiable

at p D p2.
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5.1.1 Sensitivity Analysis of a Weakly Risk-Seeking Agent’s
Optimal Strategy

A principal does not propose a contract that will be accepted by the agent but results
in zero service capacity. Therefore the only viable cases when the agent accepts the
contract and installs positive service capacities are: ��.w; p/ D p

.1 � �/p� � � or
��.w; p/ D p

p� � �.
First the case when a weakly risk-seeking agent installs ��.w; p/ Dp
.1 � �/p� � �. According to (5.8) the compensation rate w is bounded below by

�p=2 C 2
p

.1 � �/p� � � D pP.1/ � �p .P.1/ � 1=2/ C ��.w; p/, with the term
pP.1/ representing the expected penalty rate charged by the principal and the term
�p .P.1/ � 1=2/ representing the expected risk rate perceived by the agent when
the optimal capacity is installed. It dictates that the agent be reimbursed for the
expected penalty rate and the cost of the optimal service capacity discounted by his
perceived risk rate in exchange.

The optimal service capacity
p

.1 � �/p� � � depends on p, �, and �. Its
derivatives are:

@��

@p
D
s

.1 � �/�

4p
> 0,

@��

@�
D
r

.1 � �/p

4�
� 1 and

@��

@�
D �

s
p�

4.1 � �/
< 0

The above derivatives indicate that given a � and � the agent will increase the service
capacity when the penalty rate increases. Note that

p
.1 � �/p���, as a function of

�, decreases when � > .1��/p=4. From conditions (5.8) and (5.9) the agent installs
service capacity

p
.1 � �/p� � � when p 2 .p1; p2�, and according to Lemma 5.9

we have 4p1 > p2. Therefore we have 4�=.1��/ D 4p1 > p ) � > .1��/p=4 )
0 > @��=@�. Thus, given the penalty rate and the risk coefficient, the agent will
decrease the service capacity when the failure rate increases. Given a penalty rate
and a failure rate, the agent will reduce the service capacity when he is more risk-
seeking.

The agent’s optimal expected utility rate when installing capacity ��.w; p/ Dp
.1 � �/p� � � is u�

A � uA.��.w; p/I w; p/ D w � �p=2 � 2
p

.1 � �/p� C �,
and it depends on w, p, � and �. Note that @u�

A=@w D �1 < 0, @u�
A=@p D

��=2 �p
.1 � �/�=p < 0, indicating that the agent’s optimal expected utility rate

decreases with the compensation rate and the penalty rate. Note that @u�
A=@� D

�p
p
�p

p �p
4p1

	
=2. From Proposition 5.10 p < p2 < 4p1 ) p

p <
p

4p1,
therefore the agent’s optimal expected utility rate increases with his risk intensity.
Note that @u�

A=@� D � �pp �p
p1

	
=
p

p1, and from Proposition 4.23 p > p1 )p
p � p

p1 > 0, therefore the agent’s optimal expected utility rate decreases with
the failure rate.

Then the case when a weakly risk-seeking agent installs ��.w; p/ D p
p���. In

this case the agent’s optimal strategy is identical to the optimal strategy when he is
risk-neutral. According to (5.10) the w is bounded below by 2

p
p� � � D pP.1/ C
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��.w; p/, with the term pP.1/ representing the expected penalty rate charged by
the principal. It indicates that the agent will have to be reimbursed for the expected
penalty rate and the cost of the optimal service capacity.

The optimal service capacity
p

p� � � depends on the penalty rate p and the
failure rate �. Its derivatives are @��=@p D p

�=4p > 0 and @��=@� D p
p=4��1.

These derivatives imply that given �, the agent will increase the service capacity
when the penalty rate increases. Note that

p
p� � �, as a function of �, increases

when p=4 > �. From conditions (5.9) and (5.10) the agent installs service capacityp
p� � � when p � p2, and according to Lemma 5.9 we have p2 > 4�. Therefore

we have p > 4� ) p=4 > � ) @��=@� > 0. Thus, given p, an agent will increase
� when � increases.

The agent’s optimal expected utility rate when installing capacity ��.w; p/ Dp
p� � � is u�

A � uA.��.w; p/I w; p/ D w � 2
p

p� C �, and it depends on w, p
and � only. Note that @u�

A=@w D �1 < 0, @u�
A=@p D �p�=p < 0, indicating

that the agent’s optimal expected utility rate decreases with the compensation rate
and the penalty rate. Note that @u�

A=@� D �pp=� C 1, and from Proposition 5.10
p � p2 > 4� ) �pp=� C 1 < 0, therefore the agent’s optimal expected utility
rate also decreases with the failure rate.

Summary: Recall that given the set of contract offers f.w; p/ W p 2 .0; ��; w � pg
a risk-neutral agent would accept the contract, install ��.w; p/ D 0 and
receive expected utility rate u.��.w; p/I w; p/ D w � p. Given the set of offersn
.w; p/ W p > �; w � 2

p
p� � �

o
he would accept the contract, install ��.w; p/ Dp

p� � � and receive expected utility rate u.��.w; p/I w; p/ D w � 2
p

p� C �.
By comparing the optimal capacities of a weakly risk-seeking agent to that of a
risk-neutral agent, three conclusions are drawn.

1. The principal has to set a higher penalty rate p in order to induce a weakly risk-
seeking agent to install a positive service capacity versus a risk-neutral agent
(p > � for risk-neutral agent, p > �=.1 � �/ for weakly risk-seeking agent).

2. When p is relatively low, � plays a more prominent role in the utility of a weakly
risk-seeking agent who therefore installs a � lower than that when he is risk-
neutral (

p
p� � � >

p
.1 � �/p� � �). As p increases, the weakly risk-seeking

agent installs � that is identical to the one for risk-neutral agent (
p

p� � �).
3. Weakly risk-seeking agent is not worse off.

This conclusion is restated in Proposition 5.11.

Proposition 5.11. Given w and p, an agent who accepts the contract and installs
a positive service capacity has a non-decreasing expected utility rate with � for
� 2 Œ0; 8=9/.

Proof. Recall that when the compensation rate w and the penalty rate p
satisfy conditions (5.8) and (5.9), the agent installs service capacity ��.w; p/ Dp

.1 � �/p� � � > 0, and the agent’s expected utility rate is u .��.w; p// D
w � �p=2 � 2

p
.1 � �/p� C �. Note that @u=@� D �p=2 C p

p�=.1 � �/ D
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�p
p
�p

p �p
4p1

	
=2. According to Lemma 5.9, 4p1 > p2 � p, therefore

@u=@� > 0. When the compensation rate w and the penalty rate p satisfy conditions
(5.9) and (5.10), the agent installs service capacity ��.w; p/ D p

p� � � > 0,
and the agent’s expected utility rate is u .��.w; p// D w � 2

p
p� C �, therefore

@u=@� D 0. ut
Corollary 5.12. Given w and p, an agent who accepts the contract and subse-
quently installs a positive service capacity will not be worse off when he is weakly
risk-seeking .� 2 .0; 8=9// than risk-neutral .� D 0/.

We return to the case of � � 8=9 in Sects. 5.2.1 and 5.3.

5.1.2 Principal’s Optimal Strategy

We now proceed to derive the principal’s optimal strategy. Anticipating the agent’s
optimal selection of ��.w; p/ the principal chooses w and p that maximize her
expected profit rate by solving the optimization problem

max
w>0;p>0

…P.w; pI ��.w; p// D max
w>0;p>0

�
r��.w; p/

� C ��.w; p/
� w C p�

� C ��.w; p/

�

(5.11)

Denote .w�; p�/ D argmaxw>0;p>0 …P.w; pI ��.w; p//.
Before deriving the principal’s optimal strategy, we examine the case when the

principal offers p D p2 and w � w2, under which the agent is indifferent about
installing two different service capacities. In such a case, the solution ..w; p/; �/

has to be an admissible solution (see Definition 5.1). We state this case formally in
Proposition 5.13.

Proposition 5.13. Suppose a weakly risk-seeking agent. Assume that the princi-
pal’s possible offers are constrained to set f.w; p/ W p D p2; w � w2g.

(a) If r 2 .0; p2/, then the agent installs �� D p
.1 � �/p2� � � if offered a

contract.
(b) If r D p2, then both �� D p

.1 � �/p2� � � and �� D p
p2� � � lead to

admissible solutions and the agent installs either
p

.1 � �/p2��� or
p

p2���

if offered a contract.
(c) If r > p2, then the agent installs �� D p

p2� � � if offered a contract.

Proof. Note that for w � w2 we have @…P.w; p2I �/=@� D .r � p2/�=.� C �/2.
Define �L � p

.1 � �/p2� � � and �H � p
p2� � �. Note that �H > �L. If

r 2 .0; p2/, then @…P=@� < 0, therefore ..w; p2/; �L/ � ..w; p2/; �H/. If the
principal offers a contract (the conditions are discussed in detail in Theorem 5.17
that follows), then by Definition 5.1 only �L leads to admissible solutions and we
obtain (a). If r > p2, then @…P=@� > 0, therefore ..w; p2/; �H/ � ..w; p2/; �L/.
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If the principal offers a contract (the conditions are discussed in Theorem 5.17 that
follows), then by Definition 5.1 only �H leads to admissible solutions and we obtain
(c). If r D p2, then @…P=@� D 0, indicating that the principal receives the same
expected profit rate when the agent installs capacity �L or �H . If the principal offers
a contract (the conditions are discussed in Theorem 5.17 that follows), then both �L

and �H lead to admissible solutions. Therefore we obtain (b). ut
Notation:

r1 � �p2 C .1 � �/
p

p1p2 � �p2

2

 p
p2p

p2 �p
p1

!
, r2 � .1 � �/p2 C �p2

 p
p2 �p

p1p
p1

!

(5.12)

Note that r1 and r2 are functions of � and �. However we suppress the parameters
.�; �/.

We define pcu as follows1:

pcu � 1

9a2

�
b C C C C

	2
(5.13)

where a � �, b � .1 � 2�/
p

p1, and d � �r
p

p1 and

C �
3

vuut�1 C
q

�2
1 � 4�3

0

2
, C �

3

vuut�1 �
q

�2
1 � 4�3

0

2
, where �0 � b2, �1 � 2b3 C 27a2d

Replacing �0 and �1 by the expressions of a, b and d we have

C D
3

vuut2.1 � 2�/3

q
p3

1 � 27�2r
p

p1 C
q

�108�2r.1 � 2�/3p2
1 C 729�4r2p1

2
and

C D
3

vuut2.1 � 2�/3

q
p3

1 � 27�2r
p

p1 �
q

�108�2r.1 � 2�/3p2
1 C 729�4r2p1

2

Next we state a number of technical lemmas (see proofs in the Appendix).

Lemma 5.14. Let 8=9 > � > 0 and � > 0, then

1The subscript “cu” stands for “cubic” because (5.13) is the square of the solution to Eq. (A.2),
which is a cubic equation that is introduced later in the proof for Lemma 5.15.
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(a) p2 > .1 � �/p2 C �p2

 p
p2 �p

p1p
p1

!
> �p2 C .1 � �/

p
p1p2 �

�p2

2

 p
p2p

p2 �p
p1

!
.

(b) .1 � �/p2 C �p2

 p
p2 �p

p1p
p1

!
> �.

Lemma 5.15. Consider maxx2Œ
p

p1;
p

p2�
f .x/ where f .x/ D r C � � �x2=2 �p

p1 ..1 � 2�/x C r=x/ and denote x� D argmaxx2Œ
p

p1;
p

p2�
f .x/. The solutions to

this optimization problem are:

(a) x� D p
p1 if r 2 .0; ��.

(b) x� D p
pcu 2 �pp1;

p
p2

	
if r 2 .�; r2/.

(c) x� D p
p2 if r � r2.

Lemma 5.16. Consider maxx�p
p2

f .x/ where f .x/ D r C � � p
� .x C r=x/ and

denote x� D argmaxx�p
p2

f .x/. Solutions to this optimization problem are

(a) x� D p
p2 if r 2 .0; p2�.

(b) x� D p
r if r > p2.

Lemma 5.14 implies p2 > r2 > r1 and r2 > �.
Recall that Proposition 5.10 describes the agent’s optimal response to each pair

.w; p/ 2 R
2C. Since the principal will not propose a contract that ex ante is going

to be rejected by a weakly risk-seeking (WRS) agent, therefore Theorem 5.17 only
considers pairs .w; p/ 2 R

2C that result in agent’s non-negative expected utility rate.
Define

D(5.7) � f.w; p/ that satisfies (5.7) when � 2 .0; 8=9/g
D(5.8) � f.w; p/ that satisfies (5.8) when � 2 .0; 8=9/g
D(5.9) � f.w; p/ that satisfies (5.9) when � 2 .0; 8=9/g
D(5.10) � f.w; p/ that satisfies (5.10) when � 2 .0; 8=9/g
DWRS � D(5.7) [ D(5.8) [ D(5.9) [ D(5.10)

(5.14)

Theorem 5.17. Given a weakly risk-seeking agent and .w; p/ 2 DWRS.

(a) If r 2 .0; ��, then the principal does not propose a contract.
(b) If r 2 .�; r2/, then the principal’s offer and the capacity installed by the agent

are:

�
w�; p�

	 D
�

�pcu

2
C 2

p
.1 � �/pcu� � �; pcu

�
and ��.w�; p�/ D p

.1 � �/pcu� � �

(5.15)

and the principal’s expected profit rate is:
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…P.w�; p�I ��.w�; p�// D r C � � �pcu

2
�p

p1

 
.1 � 2�/

p
pcu C rp

pcu

!

(5.16)

(c) If r 2 Œr2; p2�, then the principal’s offer and the capacity installed by the agent
are:

�
w�; p�	 D .w2; p2/ and ��.w�; p�/ D p

.1 � �/p2� � � (5.17)

and the principal’s expected profit rate is:

…P.w�; p�I ��.w�; p�// D r C � � �p2

2
�p

p1

 
.1 � 2�/

p
p2 C rp

p2

!

(5.18)

(d) If r > p2, then the principal’s offer and the capacity installed by the agent are

�
w�; p�	 D

�
2
p

r� � �; r
�

and ��.w�; p�/ D
p

r� � � (5.19)

and the principal’s expected profit rate is:

…P.w�; p�I ��.w�; p�// D r � 2
p

r� C � (5.20)

Proof. The structure of the proof for Theorem 5.17 is depicted in Fig. 5.7.

Case .w; p/ 2 D(5.7): According to Proposition 5.10 part (a), in case the principal
makes an offer, the agent accepts the contract but does not install any service
capacity. Since @…P=@w D �1 < 0, thus we have w� D .1 � �=2/p and from
(3.3) …P.w�; pI ��.w�; p// D �w� C p D �p=2 > 0. However in such case
p > w� D .1 � �=2/p, which violates condition (c) in Definition 5.1, therefore
..w� D .1 � �=2/p; p/; �� D 0/ is not an admissible solution and the principal
does not propose a contract.

Case .w; p/ 2 D(5.8) [ D(5.9): According to Proposition 5.10 part (b), if .w; p/ 2
D(5.8), then in case the principal makes an offer, the agent accepts the contract
and installs

p
.1 � �/p� � �. Since @…P=@w D �1 < 0, therefore w� D �p=2 C

2
p

.1 � �/p� � �. According to Propositions 5.10 part (c) and 5.13, if .w; p/ 2
D(5.9) (which implies p D p2), then in case the principal makes an offer, the agent
accepts the contract and installs

p
.1 � �/p2� � � if r 2 .0; p2/, installs eitherp

.1 � �/p2� � � or
p

p2� � � if r D p2, or installs
p

p2� � � if r > p2. Since
@…P=@w D �1 < 0, therefore w� D w2. For convenience denote the principal’s
expected profit rate when .w; p/ D .w2; p2/ and ��.w; p/ D p

.1 � �/p2��� by
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Risk-Neutral
Principal

with Weakly
Risk-Seeking

Agent

(w, p) ∈ (5.9) ∪ (5.10)

r > p2
w∗ = 2

√
rλ − λ and p∗ = r

and μ∗ =
√

rλ − λ

r ∈ (0, max {0, r1} , p2] w∗ = w2 and p∗ = p2 and μ∗ =
√

(1 − η)p2λ − λ

r ∈ (0, max {0, r1}] No contract offered.

(w, p) ∈ (5.8) ∪ (5.9)

r > p2 w∗ = w2 and p∗ = p2 and μ∗ =
√

p2λ − λ

r ∈ [r2, p2] w∗ = w2 and p∗ = p2 and μ∗ =
√

(1 − η)p2λ − λ

r ∈ (λ, r2) w∗ =
ηpcu

2
+ 2

√
(1 − η)pcuλ − λ

and p∗ = pcu and μ∗ =
√

(1 − η)pcuλ − λ

r ∈ (0, λ] No contract offered.

(w, p) ∈ (5.7) No contract offered.

Fig. 5.7 Structure of the proof for Theorem 5.17

…L
P.p2/, and denote the principal’s expected profit rate when .w; p/ D .w2; p2/

and ��.w; p/ D p
p2� � � by …H

P .p2/. By plugging the value of w, p and �

into (3.3):

…L
P.p2/ Dr C � � �p2

2
�p

p1

 
.1 � 2�/

p
p2 C rp

p2

!
D
 p

p2 �p
p1p

p2

!
.r � r1/

(5.21)

…H
P .p2/ Dr C � �

p
�

 p
p2 C rp

p2

!
(5.22)

In such case the principal’s optimization problem is maxp2Œp1;p2�
…P

.w�; pI ��.w�; p// where:

…P.w�; pI ��.w�; p// D
8<
:

r C � � �p

2
�p

p1

�
.1 � 2�/

p
p C rp

p

�
, for p 2 Œp1; p2/

max
˚
…L

P.p2/; …H
P .p2/

�
, for p D p2

Define x � p
p, the expression r C � � �p=2 �pp1

�
.1 � 2�/

p
p C r=

p
p
	

can
be restated as f .x/ D r C � � �x2=2 �pp1 ..1 � 2�/x C r=x/. Maximizing f .x/
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with respect to x over
�p

p1;
p

p2



is equivalent to maximizing r C � � �p=2 �p

p1

�
.1 � 2�/

p
p C r=

p
p
	

with respect to p over Œp1; p2� in the sense that

argmax
p2Œp1;p2�

�
r C � � �p

2
�p

p1

�
.1 � 2�/

p
p C rp

p

��
D
0
@ argmax

x2Œ
p

p1;
p

p2�
f .x/

1
A

2

From Lemma 5.14, p2 > r2 > � and we examine the following subcases:

Subcase r 2 .0; ��: According to Lemma 5.15 part (a), p� D p1, which is
covered in .w; p/ 2 D(5.7) and the principal does not propose a contract.

Subcase r 2 �
�; r2

�
: According to Lemma 5.15 part (b), p� D pcu and

the principal’s expected profit rate is …P.w�; p�I ��.w�; p�// > …P..1 �
�=2/p1; p1I 0/ D �p1=2 > 0. Therefore the principal proposes a contract with
w� D �pcu=2 C 2

p
.1 � �/pcu� � � and p� D pcu that induces the agent to

install ��.w�; p�/ D p
.1 � �/pcu� � �.

Subcase r 2 �
r2; p2

�
: According to Lemma 5.15 part (c), p� D p2 and

according to Proposition 5.13 part (a) and (b) the principal’s expected profit
rate is …P.w�; p�I ��.w�; p�// D …L

P.p2/ > …P..1 � �=2/p1; p1I 0/ D
�p1=2 > 0. Therefore the principal proposes a contract with w� D w2 and
p� D p2 that induces the agent to install ��.w�; p�/ D p

.1 � �/p2� � �.
Subcase r > p2: According to Lemma 5.15 part (c), p� D p2 and according to

Proposition 5.13 part (c) her expected profit rate is …P.w�; p�I ��.w�; p�// D
…H

P .p2/ > …L
P.p2/ > …P..1 � �=2/p1; p1I 0/ D �p1=2 > 0. Therefore the

principal proposes a contract with w� D w2 and p� D p2 that induces the
agent to install ��.w�; p�/ D p

p2� � �.

Case .w; p/ 2 D(5.9) [ D(5.10): According to Proposition 5.10 part (d), if .w; p/ 2
D(5.10), then in case the principal makes an offer, the agent accepts the contract
and installs

p
p� � �. Since @…P=@w D �1 < 0, therefore w� D 2

p
p� � �.

According to Propositions 5.10 part (c) and 5.13, if .w; p/ 2 D(5.9) (which
implies p D p2), then in case the principal makes an offer, the agent accepts
the contract and installs

p
.1 � �/p2� � � if r 2 .0; p2/, installs eitherp

.1 � �/p2� � � or
p

p2� � � if r D p2, or installs
p

p2� � � if r > p2. Since
@…P=@w D �1 < 0, therefore w� D w2. Recall the definition of …L

P.p2/ and
…H

P .p2/ (see Eqs. (5.21) and (5.22)). Thus the principal’s optimization problem
is maxp�p2

…P.w�; pI ��.w�; p// where:

…P.w�; pI ��.w�; p// D
8<
:

max
˚
…L

P.p2/; …H
P .p2/

�
, for p D p2

r C � � p
�

�p
p C rp

p

�
, for p > p2

Define x � p
p, the expression r C � � p

�
�p

p C r=
p

p
	

can be restated as

f .x/ D r C � � p
� .x C r=x/. Maximizing f .x/ with respect to x � p

p2 is
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equivalent to maximizing r C � � p
�
�p

p C r=
p

p
	

with respect to p � p2 in
the sense that

argmax
p�p2

�
r C � �

p
�

�p
p C rp

p

��
D
 

argmax
x�p

p2

f .x/

!2

According to Lemma 5.14, p2 > r1. Also note that lim�!0C r1 D 2� and
according to Lemma 5.8 lim�!8=9� r1 D �1. Therefore we examine the
following subcases:

Subcase r 2 �
0; max

˚
0; r1

��
: According to Lemma 5.16 part (a), p� D p2.

According to Proposition 5.13 part (a), …P.w�; p�I ��.w�; p�// D …L
P.p2/ �

0, therefore the principal does not propose a contract.
Subcase r 2 �

max
˚
0; r1

�
; p2

�
: According to Lemma 5.16 part (a), p� D p2.

According to Proposition 5.13 part (a) and (b), …P.w�; p�I ��.w�; p�// D
…L

P.p2/ > 0, therefore the principal proposes a contract with w� D w2 and
p� D p2 that induces the agent to install ��.w�; p�/ D p

.1 � �/p2� � �.
Subcase r > p2: According to Proposition 5.16 part (b), p� D r and the

principal’s expected profit rate is …P.w�; p�I ��.w�; p�// D r � 2
p

r� C � >

0. Thus the principal proposes a contract with w� D 2
p

r� � � and p� D r
that induces the agent to install ��.w�; p�/ D p

r� � �.

To summarize, if r 2 .0; ��, then the principal does not propose a contract. If r 2
.�; r2/, then the principal offers .w�; p�/ D

�
�pcu=2 C 2

p
.1 � �/pcu� � �; pcu

�
and the agent installs capacity ��.w�; p�/ D p

.1 � �/pcu� � �. If r 2 Œr2; p2�,
then the principal offers .w�; p�/ D .w2; p2/ and the agent installs capacity
��.w�; p�/ D p

.1 � �/p2� � �. If r > p2, then the principal offers .w�; p�/ D�
2
p

r� � �; r
�

and the agent installs capacity ��.w�; p�/ D p
r� � �. ut

Theorem 5.17 indicates that the existence of a beneficial contract for weakly
risk-seeking agent is determined exogenously by r, �, and �.

5.2 Optimal Strategies for the Moderately Risk-Seeking
Agent

For the moderately risk-seeking agent we first derive the agent’s optimal strategy.
The agent’s optimization problem is defined in (5.3).

Notation:

p3 � 2�

2 C � � 2
p

2�
(5.23)
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and the following identity is verified using the definition of p3:

w3 �
�

1 � �

2

�
p3 D 2

p
p3� � � (5.24)

Note that p3 and w3 are functions of � and �. However we suppress the parameters
.�; �/.

Lemma 5.18. Let 2 > � � 8=9 and � > 0, then 2�=
�
2 C � � 2

p
2�
�

> 4� (see

proof in the Appendix).

We describe a moderately risk-seeking agent’s optimal response to any .w; p/ 2
R

2C in Proposition 5.19.

Proposition 5.19. Consider a moderately risk-seeking agent .� 2 Œ8=9; 2//.

(a) Given

p 2 .0; p3/ and w �
�

1 � �

2

�
p (5.25)

then the agent accepts the contract and installs ��.w; p/ D 0 with resulting
expected utility rate uA.��.w; p/I w; p/ D w � .1 � �=2/p � 0. The agent
rejects the contract if p 2 .0; p3� and w 2 .0; .1 � �=2/p/.

(b) Given

p D p3 and w � w3 (5.26)

then the agent accepts the contract and is indifferent installing either
��.w; p/ D 0 or ��.w; p/ D p

p3� � �. In both cases the agent’s expected
utility rate is uA.��.w; p/I w; p/ D w � .1 � �=2/p3 D w � 2

p
p3� C � � 0. If

r 2 .0; p3�, then neither �� D 0 nor �� D p
p3� � � leads to admissible

solutions (see Definition 5.1). If r > p3, then there exists w� such that�
.w�; p3/; �� D p

p3� � �
�

is the only admissible solution (for proof see

Proposition 5.20). He rejects the contract if p D p3 and w 2 .0; w3/.
(c) Given

p > p3 and w � 2
p

p� � � (5.27)

then the agent accepts the contract and installs ��.w; p/ D p
p� � � with

resulting expected utility rate uA.��.w; p/I w; p/ D w � 2
p

p� C � � 0. The

agent rejects the contract if p > p3 and w 2
�
0; 2

p
p� � �

�
.
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Proof. According to Table 5.1, the optimization of u.�/ when � 2 Œ8=9; 1/ versus
� 2 Œ1; 2/ is different. Therefore we prove the proposition separately for � 2 Œ8=9; 1/

and � 2 Œ1; 2/.

Case � 2 Œ8=9; 1/: According to Lemmas 5.6 and 5.18, 4p1 > p1 � p3 > 4�.
Figure 5.8 shows the shape of u.�/ when � 2 Œ8=9; 1/ and the value of p falls
in different ranges. The structure of the proof when � 2 Œ8=9; 1/ is depicted in
Fig. 5.9.

Case p 2 .0; 4��: According to Table 5.1, u.�/ is decreasing with respect to
� � 0. Therefore the agent’s optimal service capacity is ��.w; p/ D 0 and
from Eq. (5.3) u.��.w; p// D w � .1 � �=2/p. Note that 1 � �=2 > 0.

Case w 2 �
0; .1 � �=2/p

� W u.��.w; p// < 0, therefore the agent rejects the
contract.

Case w � .1 � �=2/p: u.��.w; p// � 0, thus the agent would accept the
contract if offered.

Case p 2 �
4�; p1

�
: According to Table 5.1, there is a service capacity that

maximizes u.�/ for � 2 Œ0; �/ and a service capacity that maximizes u.�/ for
� > �. Denote the optimal service capacity in Œ0; �/ by ��

Œ0;�/.w; p/. Since u.�/

is decreasing with respect to � over Œ0; �/, therefore ��
Œ0;�/.w; p/ D 0 and from

(5.3) u
�
��

Œ0;�/.w; p/
�

D w � .1 � �=2/p. Denote the optimal service capacity for

� > � by ��
�.w; p/. From first order condition ��

�.w; p/ D p
p� � � and from

(5.3) u
�
��

�.w; p/
	 D w � 2

p
p� C �. The agent has to choose one of the two

service capacities and he installs the one with higher expected utility rate. Note

that u
�
��

�.w; p/
	 � u

�
��

Œ0;�/.w; p/
�

D .1 � �=2/p � 2
p

p� C �. According to

Lemma 5.5, 4� > 2�=
�
2 C � C 2

p
2�
�

. According to Lemmas 5.6 and 5.18,

p1 � p3 > 4�, therefore we examine the following subcases.

Subcase p 2 �
4�; p3

�
: By Lemma 5.4 part (a), u

�
��

Œ0;�/.w; p/
�

>

u
�
��

�.w; p/
	
, therefore the agent’s optimal service capacity is ��.w; p/ D 0

and u.��.w; p// D w � .1 � �=2/p. Note that 1 � �=2 > 0.
Subsubcase w 2 �

0; .1 � �=2/p
�
: u.��.w; p// < 0, therefore the agent

rejects the contract.
Subsubcase w � .1 � �=2/p: u.��.w; p// � 0, thus the agent would

accept the contract if offered.

Subcase p D p3: According to Lemma 5.4 part (c), u
�
��

Œ0;�/.w; p/
�

D
u
�
��

�.w; p/
	
, indicating that installing ��

Œ0;�/.w; p3/ or ��
�.w; p3/ leads to

the same agent’s expected utility rate. Therefore the agent is indifferent about
installing ��.w; p/ D 0 or ��.w; p/ D p

p� � �. Still, the capacity value has
to lead to admissible solutions (see Proposition 5.20). Recall that by definition
w3 D .1 � �=2/p3 (see (5.24)). Note that 1 � �=2 > 0.
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Fig. 5.8 Illustration of the forms of u.�/ when � 2 Œ8=9; 1/
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η ∈
[ 8

9
, 1

)

p > 4p1

w ≥ 2
√

pλ − λ μ∗ =
√

pλ − λ

w ∈ 0, 2
√

pλ − λ
)

Reject.

p ∈ (p1, 4p1]

w ≥ 2
√

pλ − λ μ∗ =
√

pλ − λ

w ∈ 0, 2
√

pλ − λ
)

Reject.

p ∈ (4λ, p1]

p ∈ (p3, p1]

w ≥ 2
√

pλ − λ μ∗ =
√

pλ − λ

w ∈ 0, 2
√

pλ − λ
)

Reject.

p = p3

w ≥ w3 μ∗ = 0 or μ∗ =
√

p3λ − λ

w ∈ (0, w3) Reject.

p ∈ (4λ, p3)

w ≥
(

1 − η

2

)
p μ∗ = 0

w ∈
(

0,

(
1 − η

2

)
p

)
Reject.

p ∈ (0, 4λ]

w ≥
(

1 − η

2

)
p μ∗ = 0

w ∈
(

0,

(
1 − η

2

)
p

)
Reject.

Fig. 5.9 Structure of the proof for Proposition 5.19 when � 2 Œ8=9; 1/

Subsubcase w 2 �
0; .1 � �=2/p3

�
: u.��.w; p// < 0, therefore the agent

rejects the contract.
Subsubcase w � .1 � �=2/p3: u.��.w; p// � 0, therefore the agent would

accept the contract if offered.
Subcase p 2 �

p3; p1

�
: According to Lemma 5.4 part (b), u

�
��

�.w; p/
	

>

u
�
��

Œ0;�/.w; p/
�

, therefore the agent’s optimal service capacity is ��.w; p/ Dp
p� � � and u.��.w; p// D w � 2

p
p� C �. Since p > p3 > 4� )

2
p

p� � � > 3� > 0, therefore we examine the following subcases.

Subsubcase w 2
�

0; 2
p

p� � �
�

: u.��.w; p// < 0, thus the agent rejects

the contract.
Subsubcase w � 2

p
p� � �: u.��.w; p// � 0, therefore the agent would

accept the contract if offered.
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Case p 2 �
p1; 4p1

�
: According to Table 5.1, there is a service capacity that

maximizes u.�/ for � 2 .0; �� and a service capacity that maximizes u.�/ for
� > �. Denote the optimal service capacity in .0; �� by ��

.0;��.w; p/. From first

order condition the optimal service capacity is ��
.0;��.w; p/ D p

.1 � �/p� � �

and from (5.3) u
�
��

.0;��.w; p/
�

D w � �p=2 � 2
p

.1 � �/p� C �. Denote the

optimal service capacity for � > � by ��
�.w; p/. From first order condition

��
�.w; p/ D p

p� � � and from (5.3) u
�
��

�.w; p/
	 D w � 2

p
p� C �. The agent

has a choice of two service capacities and he installs the one that generates a

higher expected utility rate. Note that u
�
��

�.w; p/
	 � u

�
��

.0;��.w; p/
�

D �p=2 �
2
�
1 �p

1 � �
�p

p�. According to Lemma 5.8, p1 � p2, therefore according to

Lemma 5.7 part (b), u
�
��

�.w; p/
	

> u
�
��

.0;��.w; p/
�

, the agent’s optimal service

capacity is ��.w; p/ D p
p� � � and u.��.w; p// D w � 2

p
p� C �. Since

p > p1 > 4� ) 2
p

p� � � > 3� > 0, therefore we examine the following
subcases.

Subcase w 2
�

0; 2
p

p� � �
�

: u.��.w; p// < 0, therefore the agent rejects

the contract.
Subcase w � 2

p
p� � �: u.��.w; p// � 0, therefore the agent would accept

the contract if offered.

Case p > 4p1: According to Table 5.1, the service capacity that maximizes u.�/

satisfies � > �. From the first order condition the agent’s optimal service
capacity is ��.w; p/ D p

p� � � and u.��.w; p// D w � 2
p

p� C �. Since
p > 4p1 > 4� ) 2

p
p� � � > 3� > 0, therefore we examine the following

subcases.

Subcase w 2
�

0; 2
p

p� � �
�

: u.��.w; p// < 0, thus the agent rejects the
contract.

Subcase w � 2
p

p� � �: u.��.w; p// � 0, therefore the agent would accept
the contract if offered.

This complete the proof for Proposition 5.19 when � 2 Œ8=9; 1/.

Case � 2 Œ1; 2/: Note that 4� > 0 > p1 > 4p1 and according to Lemma 5.18,
p3 > 4�. Therefore p3 > 4� > 0 > p1 > 4p1. Figure 5.10 depicts the shape of
u.�/ when � 2 Œ1; 2/ and the value of p falls in different ranges. The structure of
the proof when � 2 Œ1; 2/ is depicted in Fig. 5.11.

Case p 2 .0; 4��: According to Table 5.1, u.�/ is decreasing with respect to
� � 0. Therefore the agent’s optimal service capacity is ��.w; p/ D 0 and
from Eq. (5.3) u.��.w; p// D w � .1 � �=2/p. Note that 1 � �=2 > 0.

Subcase w 2 �
0; .1 � �=2/p

�
: u.��.w; p// < 0, therefore the agent rejects

the contract.
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Fig. 5.10 Illustration of the forms of u.�/ when � 2 Œ1; 2/

Subcase w � .1 � �=2/p: u.��.w; p// � 0, thus the agent would accept the
contract if offered.

Case p > 4�: According to Table 5.1, there is a service capacity that maximizes
u.�/ for � 2 Œ0; �/ and a service capacity that maximizes u.�/ for � > �.
Denote the optimal service capacity in Œ0; �/ by ��

Œ0;�/.w; p/. Since u.�/ is
decreasing with respect to � over Œ0; �/, therefore ��

Œ0;�/.w; p/ D 0 and from

(5.3) u
�
��

Œ0;�/.w; p/
�

D w � .1 � �=2/p. Denote the optimal service capacity

for � > � by ��
�.w; p/. From first order condition ��

�.w; p/ D p
p� � � and

from (5.3) u
�
��

�.w; p/
	 D w � 2

p
p� C �. The agent has to choose one of the
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√
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Fig. 5.11 Structure of the proof for Proposition 5.19 when � 2 Œ1; 2/

two service capacities and he installs the one with higher expected utility rate.

Note that u
�
��

�.w; p/
	� u

�
��

Œ0;�/.w; p/
�

D .1 � �=2/p � 2
p

p� C �. According

to Lemma 5.5, 4� > 2�=
�
2 C � C 2

p
2�
�

and according to Lemma 5.18,

p3 > 4�, therefore we examine the following subcases.

Subcase p 2 �
4�; p3

�
: By Lemma 5.4 part (a), u

�
��

Œ0;�/.w; p/
�

>u
�
��

�.w; p/
	
,

therefore the agent’s optimal service capacity is ��.w; p/ D 0 and
u.��.w; p// D w � .1 � �=2/p. Note that 1 � �=2 > 0.
Subsubcase w 2 �

0; .1 � �=2/p
�
: u.��.w; p// < 0, therefore the agent

rejects the contract.
Subsubcase w � .1 � �=2/p: u.��.w; p// � 0, thus the agent would

accept the contract if offered.

Subcase p D p3: According to Lemma 5.4 part (c), u
�
��

Œ0;�/.w; p/
�

D
u
�
��

�.w; p/
	
, indicating that installing ��

Œ0;�/.w; p3/ or ��
�.w; p3/ leads to

the same agent’s expected utility rate. Therefore the agent is indifferent about
installing ��.w; p/ D 0 or ��.w; p/ D p

p� � �. Still, the capacity value has
to lead to admissible solutions (see Proposition 5.20). Recall that by definition
of w3 D .1 � �=2/p3 (see (5.24)) and 1 � �=2 > 0 ) w3 > 0.
Subsubcase w 2 �

0; w3

�
: u.��.w; p// < 0, therefore the agent rejects the

contract.
Subsubcase w � w3: u.��.w; p// � 0, thus the agent would accept the

contract if offered.
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Subcase p > p3: From Lemma 5.4 part (b), u
�
��

�.w; p/
	

> u
�
��

Œ0;�/.w; p/
�

,

therefore the agent’s optimal service capacity is ��.w; p/ D p
p� � � and

u.��.w; p// D w � 2
p

p� C �. Since p > p3 > 4� ) 2
p

p� � � > 3� > 0,
therefore we examine the following subcases.

Subsubcase w 2
�

0; 2
p

p� � �
�

: u.��.w; p// < 0, thus the agent rejects

the contract.
Subsubcase w � 2

p
p� � �: u.��.w; p// � 0, therefore the agent would

accept the contract if offered.

This completes the proof for Proposition 5.19 when � 2 Œ1; 2/. ut
In summary, under the exogenous market conditions such that a contract between

the principal and a moderately risk-seeking agent is feasible (see Theorem 5.22
later), only one formula is needed for the agent to compute his optimal service
capacity: ��.w; p/ D p

p� � � > 0.
The conditions when a moderately risk-seeking agent accepts the contract can

be depicted by the shaded areas in Fig. 5.12, where � D 1. The two shaded areas
with different grey scales represent conditions (5.25) and (5.27) under which the
agent accepts the contract but responds differently. The lower bound function of the
shaded area (denoted by w0.p/) represents the set of offers that give the agent zero
expected utility rate. w0.p/ is defined as follows:

w0.p/ D
8<
:
�

1 � �

2

�
p when p 2 .0; p3�

2
p

p� � � when p > p3

Since limp!p�

3
w0.p/ D limp!pC

3
w0.p/ D

�p
2 Cp

�
�

�=
�p

2 �p
�
�

, there-

fore w0.p/ is continuous everywhere over interval p 2 RC. However since
limp!p�

3
dw0.p/=dp D 1 � �=2 ¤ 1 � p

�=2 D limp!pC

3
dw0.p/=dp, therefore

w0.p/ is not differentiable at p D p3.

5.2.1 Sensitivity Analysis of a Moderately Risk-Seeking
Agent’s Optimal Strategy

Since the principal does not propose a contract that even if accepted will result in
zero service capacity, therefore the only viable case is when the agent accepts the
contract and installs positive service capacity: ��.w; p/ D p

p� � �. In such a
case the agent’s optimal strategy is identical to the optimal strategy for risk-neutral
agent. According to (5.10) the compensation rate w is bounded below by 2

p
p� �

� D pP.1/ C ��.w; p/, with the term pP.1/ representing the expected penalty rate
charged by the principal when the optimal capacity is installed. It indicates that the
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Fig. 5.12 Conditions when a moderately risk-seeking agent accepts the contract with � D 1

agent has to be reimbursed for the expected penalty rate and the cost of service
capacity.

The optimal service capacity
p

p� � � depends on the penalty rate p and the
failure rate �. Its derivatives are @��=@p D p

�=4p > 0 and @��=@� D p
p=4� �

1. These derivatives suggest that given the failure rate, the agent will increase the
service capacity when the penalty rate increases. Note that

p
p� � �, as a function

of �, increases when p=4 > �. From conditions (5.26) and (5.27) the agent installs
service capacity

p
p� � � when p � p3, and according to Lemma 5.18 we have

p3 > 4�. Therefore we have p > 4� ) p=4 > � ) @��=@� > 0. Thus, given
the penalty rate, the agent will increase the service capacity when the failure rate
increases.

The agent’s optimal expected utility rate when installing capacity ��.w; p/ Dp
p� � � is u�

A � uA.��.w; p/I w; p/ D w � 2
p

p� C �, and it depends on w, p
and � only. Note that @u�

A=@w D �1 < 0, @u�
A=@p D �p�=p < 0, indicating

that the agent’s optimal expected utility rate decreases with the compensation rate
and the penalty rate. Note that @u�

A=@� D �pp=� C 1, and from Proposition 5.10
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p � p3 > 4� ) �pp=� C 1 < 0, therefore the agent’s optimal expected utility
rate also decreases with the failure rate.

Summary: Recall that given the set of offers f.w; p/ W p 2 .0; ��; w � pg a
risk-neutral agent would accept the contract, install ��.w; p/ D 0. Whenn
.w; p/ W p > �; w � 2

p
p� � �

o
he would accept the contract, install ��.w; p/ Dp

p� � � and realize an expected utility rate u.��.w; p/I w; p/ D w � 2
p

p� C �.
By comparing the optimal capacities of a moderately risk-seeking agent to that of a
risk-neutral agent, three conclusions are drawn.

1. The principal has to set a higher p in order to induce a moderately risk-seeking
agent to install a positive service capacity versus a risk-neutral agent (p > � for

risk-neutral agent, p > p3 D 2�=
�p

2 �p
�
�2

> � for moderately risk-seeking

agent).
2. A moderately risk-seeking agent would install the same positive service capacity

as a risk-neutral agent (
p

p� � �).
3. Given w and p, an agent who accepts the contract and subsequently installs a

positive service capacity will receive the same expected utility rate when he is
moderately risk-seeking .� 2 Œ8=9; 2// as risk-neutral .� D 0/.

5.2.2 Principal’s Optimal Strategy

We now proceed to derive the principal’s optimal strategy. Anticipating the agent’s
optimal selection of ��.w; p/ the principal chooses w and p to maximize her
expected profit rate by solving the optimization problem

max
w>0;p>0

…P.w; pI ��.w; p// D max
w>0;p>0

�
r��.w; p/

� C ��.w; p/
� w C p�

� C ��.w; p/

�

(5.28)

where the principal’s optimal solution values are .w�; p�/ D argmaxw>0;p>0

…P.w; pI ��.w; p//.
Before we describe the principal’s optimal strategy, we reexamine the case when

the principal offers p D p3 and w � w3, under which the agent is indifferent
about installing two different service capacities. The selected solutions ..w; p/; �/

have to be admissible solutions (see Definition 5.1). We state this case formally in
Proposition 5.20.

Proposition 5.20. Suppose a moderately risk-seeking agent and principal. Assume
that the principal’s offers are constrained to f.w; p/ W p D p3; w � w3g.

(a) If r 2 .0; p3�, then the principal does not propose a contract.
(b) If r > p3, then the agent installs �� D p

p3� � � if offered a contract.
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Proof. Note that for w � w3 we have @…P.w; p3I �/=@� D .r � p3/�=.� C �/2.
Define �L � 0 and �H � p

p3� � � and note that �H > �L. If r 2 .0; p3/, then
@…P=@� < 0, therefore ..w; p3/; �L/ � ..w; p3/; �H/ and the agent would install �L

if offered a contract. However condition (c) in Definition 5.1 requires that w � p3,
therefore …P.w; p3I �L/ D �w C p3 � 0 and the principal would not propose a
contract. If r D p3, then @…P=@� D 0, therefore the agent installs either �L or
�H if offered a contract. However in such case the principal’s expected profit rate is
…P.w; p3I �L/ D …P.w; p3I �H/ D �wCp3, which is non-positive due to condition
(c) in Definition 5.1, thus the principal would not propose a contract. If r > p3, then
@…P=@� > 0 and ..w; p3/; �H/ � ..w; p3/; �L/. If the principal offers a contract
(where the conditions will be discussed in detail in Theorem 5.22 that follows), then
by Definition 5.1 only �H leads to admissible solutions. ut
Lemma 5.21. Consider maxx�p

p3
f .x/ where f .x/ D r C � � p

� .x C r=x/ and
denote x� D argmaxx�p

p3
f .x/. The solutions to this optimization problem are (see

proof in the Appendix):

(a) x� D p
p3 if r 2 .0; p3�.

(b) x� D p
r if r > p3.

The principal’s optimal strategy is described in Theorem 5.22. Recall that
Proposition 5.19 describes the agent’s optimal response to each pair .w; p/ 2 R

2C.
Since the principal will not propose a contract that is going to be rejected by a
moderately risk-seeking (MRS) agent, therefore Theorem 5.22 only considers pairs
.w; p/ 2 R

2C that result in agent’s non-negative expected utility rate. Define

D(5.25) � f.w; p/ that satisfies (5.25) when � 2 Œ8=9; 2/g
D(5.26) � f.w; p/ that satisfies (5.26) when � 2 Œ8=9; 2/g
D(5.27) � f.w; p/ that satisfies (5.27) when � 2 Œ8=9; 2/g
DMRS � D(5.25) [ D(5.26) [ D(5.27)

(5.29)

Theorem 5.22. Given a moderately risk-seeking agent and .w; p/ 2 DMRS.

(a) If r 2 .0; p3�, then the principal does not propose a contract.
(b) If r > p3, then the principal’s offer and the capacity installed by the agent are

.w�; p�/ D
�
2
p

r� � �; r
�

and ��.w�; p�/ D
p

r� � � (5.30)

and the principal’s expected profit rate is

…P.w�; p�I ��.w�; p�// D r � 2
p

r� C � (5.31)

Proof. The structure of the proof for Theorem 5.22 is depicted in Fig. 5.13.
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Risk-Neutral
Principal

with Moderately
Risk-Seeking

Agent

(w, p) ∈ (5.26) ∪ (5.27)

r > p3
w∗ = 2

√
rλ − λ and p∗ = r

and μ∗ =
√

rλ − λ

r ∈ (0, p3] No contract offered.

(w, p) ∈ (5.25) No contract offered.

Fig. 5.13 Structure of the proof for Theorem 5.22

Case .w; p/ 2 D(5.25): According to Proposition 5.19 part (a), in case the princi-
pal makes an offer, the agent accepts the contract but does not install any service
capacity. Since @…P=@w D �1 < 0, thus we have w� D .1 � �=2/p and from
(3.3) …P.w�; pI ��.w�; p// D �w� C p D �p=2 > 0. However in such case
p > w� D .1 � �=2/p, which violates condition (c) in Definition 5.1, therefore
..w� D .1 � �=2/p; p/; �� D 0/ is not an admissible solution and the principal
does not propose a contract.

Case .w; p/ 2 D(5.26) [ D(5.27): According to Proposition 5.19 part (c), if
.w; p/ 2 D(5.27), then in case the principal makes an offer, the agent accepts
the contract and installs

p
p� � �. Since @…P=@w D �1 < 0, therefore

w� D 2
p

p� � �. According to Propositions 5.19 part (b) and 5.20, if
.w; p/ 2 D(5.26) (which implies p D p3), then the principal does not propose
a contract if r 2 .0; p3�, or installs

p
p3� � � in case the principal makes an

offer when r > p3. Since @…P=@w D �1 < 0, therefore w� D w3. Denote the
principal’s expected profit rate when .w; p/ D .w3; p3/ and ��.w; p/ D 0 by
…L

P.p3/, and denote the principal’s expected profit rate when .w; p/ D .w3; p3/

and ��.w; p/ D p
p3� � � by …H

P .p3/. By plugging the value of w, p and �

into (3.3):

…L
P.p3/ D �

�
1 � �

2

�
p3 C p3 D �p3

2
(5.32)

…H
P .p3/ D r C � �

p
�

 p
p3 C rp

p3

!
(5.33)

In such case the principal’s optimization problem is maxp�p3
…P.w�; pI ��.w�; p//

where:

…P.w�; pI ��.w�; p// D
8<
:

max
˚
…L

P.p3/; …H
P .p3/

�
, for p D p3

r C � � p
�

�p
p C rp

p

�
, for p > p3
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Define x � p
p, the expression r C � � p

�
�p

p C r=
p

p
	

can be restated as

f .x/ D r C � � p
� .x C r=x/. Maximizing f .x/ with respect to x � p

p3 is
equivalent to maximizing r C � � p

�
�p

p C r=
p

p
	

with respect to p � p3 in
the sense that

argmax
p�p3

�
r C � �

p
�

�p
p C rp

p

��
D
 

argmax
x�p

p3

f .x/

!2

Therefore we examine the following subcases.

Subcase r 2 �
0; p3

�
: According to Lemma 5.21 part (a), p� D p3 and accord-

ing to Proposition 5.20 part (a) the principal does not propose a contract.
Subcase r > p3: According to Lemma 5.21 part (b), p� D r and the principal’s

expected profit rate is …P.w�; p�I ��.w�; p�// D r � 2
p

r� C � > …H
P .p3/ >

…L
P.p3/ D �p3=2 > 0. Thus the principal proposes a contract with w� D

2
p

r��� and p� D r that induces the agent to install ��.w�; p�/ D p
r���.

To summarize, if r 2 .0; p3�, then the principal does not propose a contract. If

r > p3, then the principal offers .w�; p�/ D
�
2
p

r� � �; r
�

and the agent installs

capacity ��.w�; p�/ D p
r� � �. ut

Theorem 5.22 indicates that the existence of a contract for moderately risk-
seeking agent is determined exogenously by the r, �, and �.

5.3 Optimal Strategies for the Strongly Risk-Seeking Agent

We start by deriving the strongly risk-seeking agent’s optimal strategy. The agent’s
optimization problem is defined in (5.3).

First a technical lemma (see proof in the Appendix).

Lemma 5.23. Let � > 2 and � > 0.

(a) If
2�

2 C � C 2
p

2�
> p > 0, then

�
1 � �

2

�
p � 2

p
p� C � > 0.

(b) If p >
2�

2 C � C 2
p

2�
, then 0 >

�
1 � �

2

�
p � 2

p
p� C �.

(c) If p D 2�

2 C � C 2
p

2�
, then

�
1 � �

2

�
p � 2

p
p� C � D 0.

We describe a strongly risk-seeking agent’s optimal response to any possible
offered contract .w; p/ 2 R

2C in Proposition 5.24.
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Fig. 5.14 Illustration of the forms of u.�/ when � � 2

Fig. 5.15 Structure of the
proof for Proposition 5.24
when � � 2
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p ∈ (0, 4λ] μ∗ = 0

Proposition 5.24. Consider a strongly risk-seeking agent .� � 2/. 8 w > 0 and
p > 0, the agent accepts the contract and installs ��.w; p/ D 0 with resulting
expected utility rate uA.��.w; p/I w; p/ D w � .1 � �=2/p > 0.

Proof. Figure 5.14 shows the shape of u.�/ when � � 2 and the value of p falls in
different ranges. The structure of the proof when � � 2 is depicted in Fig. 5.15.

Case p 2 .0; 4��: According to Table 5.1, u.�/ is decreasing with respect to � �
0. Therefore the agent’s optimal service capacity is ��.w; p/ D 0 and from (5.3)
u.��.w; p// D w � .1 � �=2/p. Note that 1 � �=2 � 0, therefore 8 w > 0,
u.��.w; p// > 0 and the agent would accept the contract if offered.

Case p > 4�: According to Table 5.1, there is a service capacity that maximizes
u.�/ for � 2 Œ0; �/ and a service capacity that maximizes u.�/ for � > �.
Denote the optimal service capacity in Œ0; �/ by ��

Œ0;�/.w; p/. Since u.�/ is
decreasing with respect to � over Œ0; �/, therefore ��

Œ0;�/.w; p/ D 0 and from

(5.3) u
�
��

Œ0;�/.w; p/
�

D w � .1 � �=2/p. Denote the optimal service capacity

for � > � by ��
�.w; p/. From first order condition ��

�.w; p/ D p
p� � � and

from (5.3) u
�
��

�.w; p/
	 D w � 2

p
p� C �. The agent has to choose one of

the two service capacities and he installs the one with higher expected utility
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rate. Note that u
�
��

�.w; p/
	 � u

�
��

Œ0;�/.w; p/
�

D .1 � �=2/p � 2
p

p� C �.

If � D 2, then u
�
��

�.w; p/
	 � u

�
��

Œ0;�/.w; p/
�

D �2
p

p� C �, and since

p > 4� , 2
p

p� > 4� , 0 > �3� > �2
p

p�C�, we have u
�
��

Œ0;�/.w; p/
�

>

u
�
��

�.w; p/
	
. If � > 2, then according to Lemmas 5.5 and 5.23 part (b), p > 4� >

2�=
�
2 C � C 2

p
2�
�

) u
�
��

Œ0;�/.w; p/
�

> u
�
��

�.w; p/
	
. Thus the agent’s

optimal service capacity is ��.w; p/ D 0 and u.��.w; p// D w � .1 � �=2/p.
Note that 1 � �=2 � 0, therefore 8 w > 0, u.��.w; p// > 0 and the agent would
accept the contract if offered. ut
Proposition 5.24 indicates that a strongly risk-seeking agent does not commit

any capacity, therefore the principal does not propose any contract, which we state
formally in Theorem 5.25.

Theorem 5.25. A principal never offers a contract to a strongly risk-seeking agent.

Proof. According to Proposition 5.24, the agent accepts the contract but does not
install any service capacity for all .w; p/ 2 R

2C. In such case the principal’s expected
profit rate is …P.w; pI ��.w; p// D �w C p. Since condition (c) of Definition 5.1
requires that w � p, therefore …P.w; pI ��.w; p// � 0 and the principal does not
propose a contract to a strongly risk-seeking agent! ut

5.4 Risk-Seeking Agent: A Summary

Recall the definition of p2, r2 and p3 from (5.5), (5.12) and (5.23). The conditions
when a principal makes contract offers to a risk-seeking agent is depicted by the
shaded areas in Fig. 5.16. The horizontal axis represents the agent’s risk coefficient
�, and the vertical axis represents the revenue rate generated by the principal’s
equipment unit, which is exogenously determined by the market. The principal
makes different offers to the agent when .r; �/ is in the three shaded areas with
different gray scales. We define

p23 �
�

p2 for � 2 .0; 8=9/

p3 for � 2 Œ8=9; 2/

Since lim�!.8=9/� p23 D lim�!.8=9/C p23 D 9� and lim�!.8=9/� @p23=@� D
lim�!.8=9/C @p23=@� D 81�=4, and note that lim�!2� p23 D lim�!2� p3 D C1,
therefore p23 is continuous and differentiable everywhere over .0; 2/. In Fig. 5.16
we only describe the conditions of a risk-neutral principal making offers to a weakly
and moderately risk-seeking agent (� 2 .0; 2/), because the principal never makes a
contract offer to a strongly risk-seeking agent (� � 2).

The revenue rate parameter r is determined exogenously by the market, and we
assume that the principal is only interested in operating the equipment when the
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Fig. 5.16 Conditions when a principal makes contract offers to a risk-seeking agent

revenue rate is sufficiently high, specifically r > p23. In such case weakly and
moderately risk-seeking agents would behave exactly the same as a risk-neutral
agent, and a strongly risk-seeking agent will never be offered a contract.



Chapter 6
Summary

In this paper we examine a basic principal-agent arrangement for contracting an
exclusive equipment repair service supplier. The system setting consists of one
principal, one agent, and one revenue generating unit that breaks down from time
to time and needs to be repaired when a failure occurs. Our assumptions are that
the risk-neutral principal maximizes her expected profit rate given market driven
revenue rate r collected during the unit’s uptime, the unit’s failure rate �, and the
agent’s risk attitude �. We consider different agent types – risk neutral, weakly
risk-averse, strongly risk-averse, weakly risk-seeking, moderate risk-seeking, and
strongly risk-seeking. As is common in a principal-agent context the principal
cannot contract directly for the agent’s service capacity �. The nature of the
principal-agent contract is that the principal supports the agent at a compensation
rate w > 0 but imposes on the agent a penalty rate p > 0 during the time the unit is
down. We note that the nature of the contract does not change if the w is paid to the
agent only during the unit’s uptime. In fact, the two contract versions are equivalent
(see Observation 3.1).

The main contribution of this paper is in the complete analysis of the contractual
details that have to be addressed in the agreement between the unit’s owner and
the supplier of repair services. Our pedestrian assumptions are that the failure rate
of the equipment unit is a constant �, the repair time duration has an exponential
distribution with a constant repair rate �. Furthermore, we do not restrict the
contract to a specific period of time, rather the contract can be for undetermined
time. With the assumption that both the principal and the agent are infinitely rational
the surprising outcome is that calculating the optimal strategies for the two parties
in all circumstances can be accomplished with an aid of small number of formulas
– 7 sets in total. That is, given exogenously determined values of market driven
revenue rate, equipment’s failure rate, repair capacity marginal cost, and the type of
a repair agent, it is straight forward to calculate principal’s optimal contract offer
if one exists, together with agent’s optimal service capacity decision. An optimal

© Springer International Publishing Switzerland 2016
S. Zeng, M. Dror, Formulating Principal-Agent Service Contracts
for a Revenue Generating Unit, SpringerBriefs in Operations Management,
DOI 10.1007/978-3-319-18672-6_6
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contract consists of compensation rate w and penalty rate p, both determined by the
principal, and the capacity value of � determined by the agent.

Our analysis of the above principal-agent cooperation is divided into three
main parts based on agent’s type starting with risk-neutral agent. The second part
examines the case of a contracting a risk-averse agent followed by the analysis of
a contract given a risk-seeking agent. To our knowledge analysis of principal-agent
with risk-seeking agent has not received much coverage in the literature.

As for the analysis of principal-agent construct given a risk-neutral agent, for the
entire range of exogenous parameters’ values, it can be summarized for the principal
by one set of formulas calculating optimal compensation rate w� D 2

p
r� � �

and optimal penalty rate p� D r. The agent’s optimal capacity rate formula is
��.w�; p�/ D p

r���. We note that this case has the property that without checking
if the given market conditions guarantee the existence of a contract, by calculating
principal’s optimal contract terms w� and p� and agent’s optimal capacity value
��.w�; p�/, we simultaneously verify contract existence if the resulting ��.w�; p�/

is positive. If the optimal capacity value is zero or negative, then it means that the
given market conditions do not support a service contract. It also important to note
that, for our principal-agent given a risk-neutral agent, if an optimal contract is
feasible then it is also efficient.

When considering a risk-averse agent the first task is to decide on the appropriate
mathematical expression that captures the agent’s disutility with regard to his
revenue dispersion. After examining risk premium expressions in the literature we
opted for a new risk expression not yet seen in the literature. We express agent’s
disutility as �p.1=2�j1=2��=.�C�/j/. This measure of agent’s utility value due to
his revenue fluctuation is introduced and discussed in Chap. 4. The main points are
that the risk expression acts like standard deviation and is unit-wise compatible with
other terms of agent’s utility. In high revenue industry, if the principal contracts with
a risk-averse agent with the risk disutility measured by the dispersion of the agent’s
revenue stream, then agent’s risk-aversion reduces the principal’s optimal penalty
rate and leads to deterioration of the equipment unit’s performance. Furthermore,
with risk-averse agent the principal is strictly worse off in relation to risk-neutral
agent and the social welfare is reduced as the agent’s risk-aversion increases.

We divided risk-averse agents into two types based on risk intensity parameter �.
That is, for � 2 .0; 4=5/ we refer to the agent as weakly risk-averse (Sect. 4.1) and
for � � 4=5 we refer to the agent as strongly risk-averse (Sect. 4.2). A weakly risk-
averse agent has only two formulas to consider: (i) ��.w; p/ D p

.1 � �/p� � � or
(ii) ��.w; p/ D p

.1 C �/p� � �. Only one formula, the same as (ii), is sufficient
given a strongly risk-averse agent. Formula (i) exists only for WRA agent because
when the penalty rate is low, the savings from reducing the service capacity is more
prominent than the increase in the penalty charge, providing an incentive for the
agent to reduce the optimal service capacity, which deteriorates the performance
of the principal’s equipment unit. When the penalty rate becomes high, WRA
agent increases his service capacity to reduce the penalty charge, which results in
formula (ii).
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For a risk-seeking agent we adopt a risk premium expression that reflects the
expected amount at stake instead of the dispersion of his revenue stream. Our
new risk premium expression is consistent with the theoretical developments and
empirical evidences regarding the properties of risk in recent literature. We express
agent’s risk premium as ��p .�=.� C �/ � 1=2/C, which is unit-wise compatible
with other terms of agent’s utility (see Chap. 5). If the principal contracts with a
risk-seeking agent with low penalty rate, then the agent’s risk-seeking deteriorates
the performance of the principal’s equipment unit. If the principal contract with a
risk-seeking agent with high penalty rate, then she can achieve the same equipment
performance and contract efficiency as with a risk-neutral agent. However a
principal never contracts with a strongly risk-seeking agent.

We categorize risk-seeking agents into three types based on � – risk intensity
parameter. That is, for � 2 .0; 8=9/ we refer to the agent as weakly risk-seeking
(Sect. 5.1), for � 2 Œ8=9; 2/ we refer to the agent as moderately risk-seeking
(Sect. 5.2) and the agent as strongly risk-seeking (Sect. 5.3). A weakly risk-seeking
agent has only two formulas to consider: (i) ��.w; p/ D p

.1 � �/p� � � or (ii)
��.w; p/ D p

p� � �. Only one formula, the same as (ii), is sufficient given a
moderately risk-seeking agent. A strongly risk-seeking agent never commits any
service capacity. Formula (i) exists only for WRS agent because when the penalty
rate is low, the risk premium covers the penalty charge thus provides an incentive
for the agent to reduce the optimal service capacity compared to risk-neutral. When
the penalty rate increases, WRS agent increases his service capacity to reduce the
penalty charge that cannot be covered by risk premium, which results in formula (ii).

6.1 Interpreting Table 6.1

Table 6.1 summarizes the formulas for calculating the principal’s optimal contract
terms and the agent’s optimal service capacity when a contract is supported by
exogenous market and industry conditions. Mutually exclusive exogenous condi-
tions that support a contract are listed in the column labeled “Exogenous Condition”,
and the formulas of the principal’s optimal contract terms and the agent’s optimal
capacities are listed in the column labeled “Principal’s Formula” and “Agent’s
Formula” respectively.

If a set of specific market and industry values are observed, namely the value of
the agent’s risk coefficient � (or �), the revenue rate r, and the failure rate �, then
these values can be validated against the exogenous conditions listed in the table.
If the set of values satisfies a certain condition, then the principal’s formula and the
agent’s formula corresponding to that condition can be used to calculate the optimal
contract terms and the optimal capacity. No contract is supported if the set of values
does not satisfy any condition listed in the table.

To verify that whether the observed values of �, r, and � satisfy a certain
condition, one has to calculate the values that separate the range of r into different
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intervals, including p2, p3, r2, r3, p4, r4, r2, p2, and p3. Recall that p2 and p3 are
defined in (4.5), r2 and r3 are defined in (4.12), p4 and w4 are defined in (4.23), r4

is defined in (4.28), p2 is defined in (5.5), r2 is defined in (5.12), and p3 is defined
in (5.23). Furthermore, to calculate the principal’s optimal contract terms and the
agent’s optimal capacity, one may need to calculate the values of pcu, w3, pcu, and
w2. Recall that pcu can be calculated using (4.13), w3 is defined in (4.6), pcu can be
calculated using (5.13), and w2 is defined in (5.6).

Specifically, note that when the revenue rate r 2 .p3; r2/, there are two sets of
formulas listed in the table to calculate the principal’s optimal contract terms and
the agent’s optimal capacity:

.w�; p�/ D
�
�pcu C 2

p
.1 � �/pcu� � �; pcu

�
; ��.w�; p�/ D

p
.1 � �/pcu� � �

.w�; p�/ D .w3; p3/ ; ��.w�; p�/ D
p

.1 C �/p3� � �

According to Proposition 4.20 it is difficult to identify the principal’s optimal offer
when r 2 .p3; r2/ due to the difficulty of computing pcu (see Eq. (4.13)). However,
given the value of �, r, and �, the principal’s expected profit rate of both offers can
be calculated (see the formulas for calculating the principal’s expected profit rate in
Proposition 4.20), and the offer with higher expected profit rate should be selected
by the principal.

In summary, this paper provides a small set of formulas that exhaustively covers
the computing of Pareto optimal principal-agent contract offer and corresponding
service capacity for any values of market and industry parameters.
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